56 research outputs found

    Amygdala involvement in self-blame regret

    Get PDF
    Regret-related brain activity is dependent on free choice, but it is unclear whether this activity is a function of more subtle differences in the degree of responsibility a decision-maker exerts over a regrettable outcome. In this experiment, we show that trial-by-trial subjective ratings of regret depend on a higher subjective sense of responsibility, as well as being dependent on objective responsibility. Using fMRI we show an enhanced amygdala response to regret-related outcomes when these outcomes are associated with high, as compared to low, responsibility. This enhanced response was maximal in participants who showed a greater level of enhancement in their subjective ratings of regret engendered by an objective increase in responsibility. Orbitofrontal and cingulate cortex showed opposite effects, with an enhanced response for regret-related outcomes when participants were not objectively responsible. The findings indicate that the way the brain processes regret-related outcomes depends on both objective and subjective aspects of responsibility, highlighting the critical importance of the amygdala

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI) at high magnetic fields has made it possible to investigate the columnar organization of the human brain in vivo with high degrees of accuracy and sensitivity. Until now, these results have been limited to the organization principles of early visual cortex (V1). While the middle temporal area (MT) has been the first identified extra-striate visual area shown to exhibit a columnar organization in monkeys, evidence of MT's columnar response properties and topographic layout in humans has remained elusive. Research using various approaches suggests similar response properties as in monkeys but failed to provide direct evidence for direction or axis of motion selectivity in human area MT. By combining state of the art pulse sequence design, high spatial resolution in all three dimensions (0.8 mm isotropic), optimized coil design, ultrahigh field magnets (7 Tesla) and novel high resolution cortical grid sampling analysis tools, we provide the first direct evidence for large-scale axis of motion selective feature organization in human area MT closely matching predictions from topographic columnar-level simulations

    Hemodynamic Traveling Waves in Human Visual Cortex

    Get PDF
    Functional MRI (fMRI) experiments rely on precise characterization of the blood oxygen level dependent (BOLD) signal. As the spatial resolution of fMRI reaches the sub-millimeter range, the need for quantitative modelling of spatiotemporal properties of this hemodynamic signal has become pressing. Here, we find that a detailed physiologically-based model of spatiotemporal BOLD responses predicts traveling waves with velocities and spatial ranges in empirically observable ranges. Two measurable parameters, related to physiology, characterize these waves: wave velocity and damping rate. To test these predictions, high-resolution fMRI data are acquired from subjects viewing discrete visual stimuli. Predictions and experiment show strong agreement, in particular confirming BOLD waves propagating for at least 5–10 mm across the cortical surface at speeds of 2–12 mm s-1. These observations enable fundamentally new approaches to fMRI analysis, crucial for fMRI data acquired at high spatial resolution

    Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns

    No full text
    The capacity of functional MRI (fMRI) to resolve cortical columns depends on several factors. These include the spatial scale of the columnar pattern, the point-spread of the fMRI response, the voxel size, and the signal-to-noise ratio (SNR) considering thermal and physiological noise. However, it remains unknown how these factors combine, and what is the voxel size that optimizes fMRI of cortical columns. Here we combine current knowledge into a quantitative model of fMRI of realistic patterns of cortical columns with different spatial scales and degrees of irregularity. We compare different approaches for identifying patterns of cortical columns, including univariate and multivariate based detection, multi-voxel pattern analysis (MVPA) based decoding, and high-resolution imaging and reconstruction of the pattern of cortical columns. We present the dependence of the performance of each approach on the parameters of the imaged pattern as well as those of the data acquisition. In addition, we predict voxel sizes that optimize fMRI of cortical columns under various scenarios. We found that all measures associated with multivariate detection and decoding could be approximately calculated from a measure we termed “multivariate contrast-to-noise ratio” (mv-CNR), which is a function of the contrast-to-noise ratio (CNR) and number of voxels. Furthermore, mv-CNR implied that the optimal voxel width for detection and decoding is independent of changes in response amplitude, SNR and imaged volume that are not caused by changes in voxel size. For regular patterns, optimal voxel widths for detection, decoding and imaging/reconstructing the pattern of cortical columns were approximately half the main cycle length of the organization. Optimal voxel widths for irregular patterns were less dependent on the main cycle length, and differed between univariate detection, multivariate detection and decoding, and reconstruction. We compared the effects of different factors of Gradient Echo fMRI at 3 Tesla (T), Gradient Echo fMRI at 7T, and Spin-Echo fMRI at 7T on the detection, decoding, and reconstruction measures considered and found that in all cases the width of the fMRI point-spread had the most significant effect. In contrast, different response amplitudes and noise characteristics played a relatively minor role. We recommend specific voxel widths for optimal univariate detection, for multivariate detection and decoding, and for high-resolution imaging of cortical columns under these three data-acquisition scenarios. Our study supports the planning, optimization, and interpretation of high-resolution fMRI of cortical columns and the decoding of information conveyed by these columns

    Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity

    No full text
    Previous attempts at characterizing the spatial specificity of the blood oxygenation level dependent functional MRI (BOLD fMRI) response by estimating its point-spread function (PSF) have conventionally relied on retinotopic spatial representations of visual stimuli in area V1. Consequently, their estimates were confounded by the width and scatter of receptive fields of V1 neurons. Here, we circumvent these limits by instead using the inherent cortical spatial organization of ocular dominance columns (ODCs) to determine the PSF for both Gradient Echo (GE) and Spin Echo (SE) BOLD imaging at 7 Tesla. By applying Markov chain Monte Carlo sampling on a probabilistic generative model of imaging ODCs, we quantified the PSFs that best predict the spatial structure and magnitude of differential ODCs' responses. Prior distributions for the ODC model parameters were determined by analyzing published data of cytochrome oxidase patterns from post-mortem histology of human V1 and of neurophysiological ocular dominance indices. The average PSF full-widths at half-maximum obtained from differential ODCs' responses following the removal of voxels influenced by contributions from macroscopic blood vessels were 0.86 mm (SE) and 0.99 mm (GE). Our results provide a quantitative basis for the spatial specificity of BOLD fMRI at ultra-high fields, which can be used for planning and interpretation of high-resolution differential fMRI of fine-scale cortical organizations

    Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns

    No full text
    Multivariate machine learning algorithms applied to human functional MRI (fMRI) data can decode information conveyed by cortical columns, despite the voxel-size being large relative to the width of columns. Several mechanisms have been proposed to underlie decoding of stimulus orientation or the stimulated eye. These include: (I) aliasing of high spatial-frequency components, including the main frequency component of the columnar organization, (II) contributions from local irregularities in the columnar organization, (III) contributions from large-scale non-columnar organizations, (IV) functionally selective veins with biased draining regions, and (V) complex spatio-temporal filtering of neuronal activity by fMRI voxels. Here we sought to assess the plausibility of two of the suggested mechanisms: (I) aliasing and (II) local irregularities, using a naive model of BOLD as blurring and MRI voxel sampling. To this end, we formulated a mathematical model that encompasses both the processes of imaging ocular dominance (OD) columns and the subsequent linear classification analysis. Through numerical simulations of the model, we evaluated the distribution of functional differential contrasts that can be expected when considering the pattern of cortical columns, the hemodynamic point spread function, the voxel size, and the noise. We found that with data acquisition parameters used at 3 Tesla, sub-voxel supra-Nyquist frequencies, including frequencies near the main frequency of the OD organization (0.5 cycles per mm), cannot contribute to the differential contrast. The differential functional contrast of local origin is dominated by low-amplitude contributions from low frequencies, associated with irregularities of the cortical pattern. Realizations of the model with parameters that reflected best-case scenario and the reported BOLD point-spread at 3 Tesla (3.5mm) predicted decoding performances lower than those that have been previously obtained at this magnetic field strength. We conclude that low frequency components that underlie local irregularities in the columnar organization are likely to play a role in decoding. We further expect that fMRI-based decoding relies, in part, on signal contributions from large-scale, non-columnar functional organizations, and from complex spatio-temporal filtering of neuronal activity by fMRI voxels, involving biased venous responses. Our model can potentially be used for evaluating and optimizing data-acquisition parameters for decoding information conveyed by cortical columns
    corecore